Zupt's Inertial Metrology Service

www.Zupt.com

Presentation Agenda

- 01 Zupt's Metrology Track Record
- 02 Client Provided Preliminary Data
- 03 Personnel Requirements
- 04 Mechanical Interface
- 05 Task Plan
- 06 Mobilization Sequence
- 07 Communications ROV/Surface Surface/Onshore
- 08 Operational Sequence
- 09 Real-time Data QC
- 10 Deliverables

Zupt's Inertial Metrologies

To-date we have commercially delivered apx. 200 metrologies in: Regions:

- West Africa Angola, Congo, Ghana rig and survey vessels
- U.S. Gulf of Mexico rig and survey vessels (worked to 3,200m)
- North Sea from rig
- Bahamas (42" dia. spool) shallow water barge with divers
- Mexico divers in deep water (130m)

Fields worked:

- Angola: Shenzi, Pazflor, Girassol, CLOV, Dahlia, Girri
- Congo: Moho Bilondo, Moho Nord
- Ghana: Jubilee, TEN
- GoM: Mississippi Canyon, Green Canyon, Bay of Campeche, etc.
- North Sea: Pelican

Clients:

- Total
- BHP Billiton
- Oceaneering
- Fugro
- Shell
- DOF Subsea
- LLOG
- Harkand
- Marubeni
- Tullow
- TAQA
- Acergy
- Statoil
- Jan de Nul
- Hess, etc.

Client Preliminary Data

Client provided preliminary data:

Local field drawing of job location that hopefully includes:

- Estimated Well location
- Structure Location manifold, PLET, PLEM, template, etc

Jumper name fully defined

Hub naming full defined

Metrology receptacle fully defined (what are we stabbing into)

All dimensional Control (DC) data:

- Offsets (linear and angular) from stab to hub reference face at both ends
- Structure reference frame definition

Deliverables required with required accuracy

Personnel Requirements

International work: Three* Zupt personnel offshore for 24 hour operations. Domestic Work: Two Zupt personnel Remote Work: No survey personnel offshore – 2 monitoring

Data is quality controlled on the vessel and reviewed in Houston. The offshore deliverable (ODEL) is delivered on the vessel within 24** hours of the recovery of the equipment.

*If multiple (>3) back to back metrologies a 4th team member is added. ** In some cases we are required to deliver the ODEL within 12 hours.

In many cases we work as part of a survey contractors team and we utilize their personnel (once trained) as part of our team. With experienced companies we can end up with just a single Zupt (PC) on the job once the survey contractors team are fully trained.

ROV Interfacing

Power:

24V dc, 75W (We also have battery back up internal to our tool)

Communications:

One RS232 serial survey channel on the ROV

RS232 channel (>=38,400 baud/bps).

We supply a serial multiplexer [MicroTTU] with C-PINS for all external sensors. ROV's rarely have the channels available that were available when talking about the job on the beach.

Mobilization

- Mobilize ROV with the metrology tool check communications and power
- Prepare all metrology tooling for deployment
- If two ROV's available one does cleaning of receptacles and GVI
- The second ROV is deployed with C-PINS

Inertial Metrology Components

C-PINS alignment(<1 hr)</th>Hub attitude (heading, pitch, roll) measurements(1 - 2 hrs)Position loops (range between hubs)(2 - 3.5 hrs)Depth difference between hubs(0.5 - 0.75 hrs)Step height survey of both hubs(0.5 - 1 hrs)Bathymetric survey of jumper route(0.75 - 1.5 hrs)

Total

Approx 6-12 hrs

C-PINS Alignment

C-PINS alignment / 4 quadrant rotation (<1 hr)

Hub Attitude Loops

Attitude loops provide heading, pitch, roll of well and manifold (Hub A & Hub B)

Hub Position Loops

Position Loops

(2 – 3.5 hrs)

Minimum of 5 (6 for 50mm) good position loops to deliver range between hubs. A loop is defined as:

ROV starts at Hub A with position fix (Well or Manifold). ROV picks up C-PINS & traverses to Hub B. ROV stabs C-PINS into Hub B receptacle.

Position fix at Hub B

ROV picks up C-PINS & traverses to Hub A

ROV stabs C-PINS into Hub A receptacle.

Fix at Hub A taken to close position loop.

Position loops provide relative range between well and manifold (Hub A & Hub B)

Depth Difference Loops

Depth Difference Loops (Digiquartz)

(0.5 - 1hr)

Hub A

Hub B

Depth Difference Loops provide hub depth comparison

Step Height Survey

Step Height Survey (Digiquartz)(0.5 - 1hr)Top of hub and plant North mudline depth measurements

Step Heigh Survey provides hub heights and mudline data

Step Height Measurements

Step heights at manifolds are easy.

At the well – a whole other story. Frame grabs should be included in reports to explain why.

Bathy Survey, Step or Fly?

Step Bathymetric Survey (Digiquartz)

Log position every 2m along jumper route with Digiquartz. Our preferred method.

Fly

Using mini SVS and an altimeter in addition to the Digiquartz, we can fly the route.

(0.75 – 1.5 hrs)

Bathymetric Survey

Alpha and Beta Angle Quality

Real-time Quality Control

It is critical that we see real time quality data as we are working.

Position loop selection on the left.

essing	9					1	HIDE	
]				Position L	oops	•	
	Position Loops							
Ena	Tie N	Tie E	Tie D	E@S N	E@SE	E@S D		
X	-0.041	0.078	-0.278	0.000	0.000	0.000	-	
X	-0.172	0.213	-0.327	-0.012	0.026	-0.080		
X	-0.022	-0.032	-0.184	-0.070	0.100	-0.172		
X	-0.070	-0.023	-0.132	-0.039	0.033	-0.173		
X	0.048	0.094	-0.178	-0.049	0.006	-0.151		
×	0.019	0.075	-0.137	0.002	0.046	-0.166		
		8	1	8	1			
		- 12		10				
							-	
		Ena Tie N × -0.041 × -0.022 × -0.070 × 0.048 × 0.048 × 0.019	Ena Tie N Tie E × -0.041 0.078 × -0.172 0.213 × -0.022 -0.032 × -0.070 -0.023 × 0.048 0.094 × 0.019 0.075 × 0.019 0.075	Ena Tie N Tie E Tie D ★ -0.041 0.078 -0.278 ★ -0.041 0.078 -0.278 ★ -0.172 0.213 -0.327 ★ -0.022 -0.032 -0.184 ★ -0.070 -0.023 -0.132 ★ 0.048 0.094 -0.178 ★ 0.019 0.075 -0.137	Ena Tie N Tie E Tie D E@S N ★ -0.041 0.078 -0.278 0.000 ★ -0.041 0.078 -0.278 0.000 ★ -0.0172 0.213 -0.327 -0.012 ★ -0.022 -0.032 -0.184 -0.070 ★ -0.070 -0.023 -0.132 -0.039 ★ 0.048 0.094 -0.178 -0.049 ★ 0.019 0.075 -0.137 0.002	Position Loops Ena Tie N Tie E Tie D E@S N E@S E ★ -0.041 0.078 -0.278 0.000 0.000 ★ -0.172 0.213 -0.327 -0.012 0.026 ★ -0.070 -0.023 -0.132 -0.039 0.033 ★ -0.070 -0.023 -0.178 -0.049 0.006 ★ -0.070 -0.023 -0.137 0.049 0.006 ★ 0.019 0.075 -0.137 0.002 0.046	Position Loops Ena Tie N Tie E Tie D E@S N E@S E E@S D × -0.041 0.078 -0.278 0.000 0.000 0.000 × -0.172 0.213 -0.327 -0.012 0.026 -0.080 × -0.022 -0.032 -0.184 -0.070 0.100 -0.172 × -0.070 -0.023 -0.132 -0.039 0.033 -0.173 × 0.048 0.094 -0.178 -0.049 0.006 -0.151 × 0.019 0.075 -0.137 0.002 0.046 -0.166	

Individual data sets and their impact on the final solution are on the screen in front of us – as we collect the data.

We know when we are done! SD at ~65% of client spec.

Proc	essing								IIDE
						HUE	3 Results		-
	Hub Results								\square
HUD	Distance	DDepth	Northing	Easting	Depth	Head +	Pitch	Roll	
D 2	22.653	-0.008	3315065.557	257058.966	7.982	0.108	0.429	0.003	
	Std.Dev.		0.015	0.018	0.041	0.063	0.103	0.120	
	5	8			8	8			
	ę	<u></u>		<u>.</u>	<u>.</u>	<u> </u>	ş	-	-
0.01	÷	č –	Ś.	8	8	÷	÷	i i	•
	5	8	8	8	8	1	5		
1 3		e							
)	0						0	
-		0		20	V.9		19	X	1000

Deliverables

Zupt uses pure inertial (unaided) navigation to perform subsea metrologies using our C-PINS systems. Inertial drift is constrained using zero velocity updates (zupts).

Deliverables:

The results of a C-PINS metrology consist of jumper fabrication measurements for the construction of a jumper/spool piece that include:

Hub to Hub Horizontal Distance Depth Difference between Hubs Hub Attitude (Heading, Pitch, Roll) Alpha / Beta Angles between Hubs (for horizontal connectors) Hub Step Heights (hub to mud line) Bathymetric Profile of Jumper Route

Deliverables

ODEL (Offshore Deliverable)

Prior to departure from the survey platform (vessel or rig) the metrology results are delivered to the client in the form of an offshore deliverable.

ODEL contains all metrology data required to generate the isometric/pipeline drawings for jumper fabrication.

Metrology data gathered is sent to Houston for QC during and immediately upon completion of survey. Client is issued raw data distance, attitude and bathymetry data within an hour of survey completion (many times – during the survey).

Results delivered within 12 (if required) or 24 (standard) hours of the recovery of the equipment to the surface.

	Variable	Metrology Result	Notes	
Horizontal Distance	L	40.804 m	True Horizontal Length	
Angle Alpha	α	57.70°	Horizontal angle between Y1 axis and direct line between reference points	a set a
Angle Beta	β	54.22°	Horizontal angle between Y2 axis and direct line between reference points	
Manifold M11 Hub B Pitch	X1 Rotation around X1	0.11°	Forward Up - in the direction of the jumper at Manifold M11	M0B1-10
Manifold M11 Hub B Roll	Y1 Rotation around Y1	0.02°	Port Up - in the direction of the jumper at Manifold M11 (Manifold Heading: 346.35°)	
PGB MOB1-10 Hub A Pitch	X2 Rotation around X2	-0.36°	Forward Down - in the direction of the jumper at PGB MOB1-10	
PGB MOB1-10 Hub A Roll	Y2 Rotation around Y2	-0.03°	Port Down - in the direction of the jumper at PGB MOB1-10 (PGB Heading: 349.83°)] Han
Difference in Depth	z	1.613 m	Manifold is deeper From center of hub to center of hub	HUB B

	Name	Position	D	ate	NOTES: 1. Data computed from C-PINS inertial navination system			
Computed	Alex Spriggs	INS Surveyor	25 Ja	n. 2014				
Computed	Ozer Ozturk	CAD/Data Processor	25 Ja	n. 2014	2. Data collected onboard the	GSF135 Jan 24 th and 25 st 2014		
Computed	Geoffrey Knowles	Party Chief	25 Ja	n. 2014	3. Differential depths established using C-PINS inertial system 4. Bathymetry established using external Digiquartz pressure sen			
Checked	Tim Griffin	Project Manager	25 Ja	n. 2014				
	Bruno Hommet Client Representative		25 Ja	n. 2014	IFC ODEL 0128201	14-MOB1-10 P111 REV1.DOCX		
- T		AL EXPLORATION AND PRODUCTION CONSO				Zupt. LLC		

TOTAL	TOTAL EXPLORATION AND PRODUCTION CONSO MOHO BILONDO METROLOGY OPERATIONS Project No.4540002059	METROLOGY SURVEY RESULTS PGB MC61-10 to M11 (P111)	Zupt, LLC 10953 Cutteri Rd, Suite A102 Houston, TX 77066
Page 1			ODEL_P111_CONGO_3RDTRIP_Rev1

Bathymetry Data

Metrology Results – GC610 - Manifold H to Well H-102

X2 WELL H-102

Parameter	Variable	Metrology Result	Notes	GC610 OCS-G-16765
Horizontal Distance	L	64.25	True Horizontal Distance	MANIFOLD 14
Manifold H Hub A Pitch	X1 Rotation around X1	-0.24°	Forward Down - in the direction of the jumper at Manifold H	
Manifold H Hub A Roll	Y1 Rotation around Y1	+0.33°	Port Up – in the direction of the jumper at Manifold H	5-16477 MP 4" 0 Y1 X1/0 4-1647 Au
Well H-102 Hub B Pitch	X2 Rotation around X2	+0.07°	Forward Up – in the direction of the jumper at the Well H-102] / L Y2
Well H-102 Hub B Roll	Y2 Rotation around Y2	-0.16°	Port Down – in the direction of the jumper at the Well H-102	HUB E
Difference in Depth	z	0.65	Manifold H is deeper Vertical reference with cap offsets	
Note: All distances All angles an Combined so	are in feet. e in degrees. cale factor fror	n UTM positio	ns to true = 1.00082233	

	Name	Position	Date	NOTES:
Computed	Geoffrey Knowles	Party Chief	October 29, 2013	 Metrology completed on October 27, 2013. Data computed from C-PINS inertial metrology.
	Quinn Guidry	INS Surveyor		3. Differential leveling measured with an external Digiquartz sensor.
	Timothy Griffin	Project Manager		 Bathymetry measured with an external Digiquartz sensor. Measurements at Well H-102 had a higher standard deviation than
				measurements at Manifold H due to circulation induced vibration.
				IFR - ODEL-GC610-H Manifold to Well H-102-10292013 Rev0

bhp billiton	BHP BILLITON GC610 METROLOGY OPERATIONS PROJECT NO. 130946	METROLOGY SURVEY RESULTS GC610 Well H-102 BHP 6" - SEG NO. 18478	ZUPT, LLC 10963 CUTTEN RD, SUITE A102 HOUSTON, TX 77066
Page 1			

24

bhp billiton	BHP BILLITON	METROLOGY SURVEY RESULTS	ZUPT, LLC
	GC610 METROLOGY OPERATIONS	GC610 Well H-102	10963 CUTTEN RD, SUITE A102
	PROJECT NO. 130946	BHP 6* - SEG NO. 18478	HOUSTON, TX 77066
Page 2		ODEL-G	C610-H Manifold to Well H-102-10292013 Rev

We believe that the definition of the mechanical interface is **critical to a successful metrology**. Zupt has multiple tooling options available and has designed many tools for unique operational constraints. We prefer to use standard receptacles wherever possible. We have completed precise dimension control surveys of both stabs and receptacles as a part of several of our projects.

DC – Offsets and Accuracy

If possible, we would like some involvement in yard DC work – or the ability to understand the quality of the DC work.

Hopefully receptacles are close to hub and accessible.

Make sure both linear and angular lever arms are measured.

In some instances, we work with both a fixed receptacle away from the hub and tooling that installed onto the hub face.

We believe that the mechanical interface to the structure is one of the *most critical issues* that impacts the *accuracy, efficiency* and *quality* of metrology surveys.

OR

29

Does it matter that the stab has an interference fit with the receptacle – or if we can stab the tool in faster.

Slightly longer stabs make up easier. Protect the nose of the stab and it will always fit

Complete a make up test of tooling if at all possible.

Good

Bad

Some inappropriate client provided tooling and inappropriate plastic receptacles.

Tooling Examples

CLOV Tool

Trouser Plate

Tooling Examples

Vertical connector standard in GoM

Brownfield existing jumper measurements

ROV Operational Issues

Cabling – ground faults and make up time!!

Equipment Footprint

Currently the system components (qty 2 C-PINS systems, 2 sets of external sensors, cabling, tooling and 2 laptops, etc.) are housed in 4 shipping cases for domestic use and can be flown or sent offshore via crew boat.

For international shipment additional shipping cases are required for the long term support spares, printers, additional tool cases, Scotchcast as well as multiple ROV lifting tools and assorted cabling (apx. 2m³).

International

What is a System?

Two of everything:

C-PINS Tooling stabs Lifting Hardware Cabling (PBOF and rubber) Surface PC's /w SSTT Software

CTD (Seabird SBE 19+ or AML Minos X)

Digiquartz Pressure Sensor (rated for project)

Vaisala Surface Barometer

If flying the route survey:

Tritech Altimeter PA200 Valeport Mini SVS

Metrology Conclusions

Mature and fully proven – if you have a place to stab inertial metrology works Accurate

- +/- 30mm to 15m jumper/spool length
- +/- 50mm to 50m
- +/- 75mm to 90m
- +/- 100mm for longer lengths <150m

Practical – clients can QC our data within hours of first exposure

Very efficient (much less boat/rig time needed) ~ 6 hours for full metrology including route survey

- Works in the presence of drilling noise and vibration
- No "line of sight needed"
- Smaller footprint less people on board (POB) less bunk space needed
- Vessel independent MSV, divers or a rig no need for USBL
- Connector independent Horizontal, Vertical, SHO, PLET, FLET etc.
- One channel needed from ROV hence very fast ROV mob time
- Inertial needs no vessel time to deploy array frames or complex subsea stands

Contact Info

PHONE +1 832 295 7280

